The finiteness of security (Tutorial)

Renato Renner

$$\varepsilon > 0$$
 (Tutorial)

Renato Renner

Rationale

 $\varepsilon > 0$

- Security is always finite.
- It is therefore crucial to understand how to quantify it.

Epsilon-security

Certificate

The keys generated by this device have security

$$\varepsilon = 10^{-8}$$

"Finite-size effects" sound rather boring ...

... but the epsilon is hotly debated

Debate at the "HotPI" conference, Hunan University, Changsha

The debate is still ongoing ...

Misconception in Theory of Quantum Key Distribution -Reply to Renner-

Osamu Hirota*

Quantum ICT Research Institute, Tamagawa University 6-1-1, Tamagawa-gakuen, Machida, Tokyo, 194-8610, JAPAN (Dated: August 16, 2018)

It has been pointed out by Yuen that the security theory of quantum key distribution (QKD) guided by Shor-Preskill theory has serious defects, in particular their key rate theory is not correct. Theory groups of QKD tried to improve several defects. Especially, Renner employed trace distance

... and is basically about the epsilon

On the Foundations of Quantum Key Distribution — Reply to Renner and Beyond*

Horace P. Yuen

Department of Electrical Engineering and Computer Science

Department of Physics and Astronomy

Northwestern University, Evanston Il. 60208

yuen@eecs.northwestern.edu

August 4, 2018

Abstract

In a recent note (arXiv:1209.2423) Renner claims that the criticisms of Hirota and Yuen on the security foundation of quantum key distribution arose from a logical mistake. In this paper it is shown that Renner

What is the problem?

has been repeatedly given in [2-5]. Rather, Renner made a fundamental error in [7-8] which has become the standard interpretation of the trace distance criterion d widely employed in QKD. This incorrect interpretation leads to the current prevalent QKD security claim that the generated key K has a probability $p \geq 1-d$ of being ideal [9-11]. In actuality, K is not

Security claim

Certificate

The keys generated by this device have security

$$\varepsilon = 10^{-8}$$

Operational meaning:

"An adversary cannot gain any information about the secret, except with probability epsilon."

Where does the epsilon come from?

From statistical fluctuations in the random choices.

© Dilbert by Scott Adams

Risk that adversary makes correct guesses

Recall that QKD protocols involve various random choices.

From Bennett and Brassard, Quantum cryptography: Public key distribution and coin tossing (1984)

Note: This risk cannot be reduced to zero.

Risks can have different levels of severeness

Example: Earth quakes in Switzerland

Operational meaning:

The probability of experiencing this is 0.5 % within fifty years.

Epsilon-security is "all or nothing"

Certificate

Any key generated by this device is secure, except with probability

$$\varepsilon = 10^{-8}$$

Epsilon-security is common in engineering

Certificate

A DBA does not occur, except with probability

$$\varepsilon = 10^{-6}$$
 per year.

Note: epsilon cannot be reduced to zero.

Epsilon-security is common in engineering

Certificate

The keys generated by RSA remain secure for time *t*, except with probability

$$\varepsilon(t)$$

which is related to the probability that large numbers can be factored in time poly(*t*).

Quantum versus computational cryptography

How is epsilon defined?

Certificate

The keys generated by this device have security

$$\varepsilon = 10^{-8}$$

Technical definition (without Eve)

 ε Trace distance between probability distribution of real key K and uniformly distributed string U.

Technical definition (without Eve)

 ε corresponds to weight of red area.

Real world / ideal world paradigm

Perfect Key Generation Device

Requirements

Correctness: $K_A = K_B = K$

Secrecy: K uniformly distributed and independent of E

Real world / ideal world paradigm

real world ideal world

QKD Protocol $\begin{matrix} \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ K_A & E & K_B \end{matrix}$

Perfect Key Generation Device

Real world / ideal world paradigm

Definition: The Protocol is ε -secure if $P_{\rm KE}$ and $P_{\rm KE}$ have trace distance ε from each other.

What does epsilon mean operationally?

Theorem: If the Protocol is ε -secure then there exists a joint distribution such that, with probability at least $1 - \varepsilon$,

$$K = K$$
 and $E = E$

Proof idea

Recall: Red area corresponds to trace distance ε .

Idea: Define K = K, except when red.

What does epsilon mean operationally?

Theorem: If the Protocol is ε -secure then there exists a joint distribution such that, with probability at least $1 - \varepsilon$,

$$K = K$$
 and $E = E$

What does epsilon mean operationally?

Interpretation: If the Protocol is ε -secure then the probability that it behaves differently from a perfect device is at most ε .

Quantum version

Theorem: If the Protocol is ε -secure then there exists a state $\rho_{\rm KE}$ and events Ω and Ω with probability $1-\varepsilon$ s.t.

$$ho_{\mathrm{KE}|\Omega} =
ho_{\mathrm{KE}}$$
 and $ho_{\mathrm{KE}|\Omega} =
ho_{\mathrm{KE}}$

Composability: Summation rule

Epsilons add up (because failure probabilities add up).

Contributions to epsilon

Example: Privacy Amplification

raw key with min-entropy at least h

Theorem: Given a raw key with min-entropy at least equal to h, the n-bit key is uniform, except with probability

$$\varepsilon_{\mathrm{PA}} = 2^{-\frac{1}{2}(h-n)}$$

How to choose epsilon?

failure probability per key generated

number of keys generated

upper bound on failure

 $\varepsilon = 10^{-12}$ (recommended value)

 $N = 10^9$

 $p_{fail} = 1/1000$

 $\varepsilon = 2 \cdot 10^{-5}$

N = 50

 $p_{fail} = 1/1000$

failure probability per year

number of years in operation

upper bound on failure

Summary

 $\varepsilon > 0$

- Security is always finite.
- It is therefore crucial to understand how to quantify it.

Questions?

$$\varepsilon > 0$$